
 
 
 
 
 

  
 
 
 
 
 
 
 
 

[Bypassing JavaScript Filters – the Flash! Attack] 
 

last updated: 25.August.2002 
 
 

Obscure [obscure@eyeonsecurity.net] 
 

 
 

http://eyeonsecurity.net/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2001,2002 EyeonSecurity,  
Redistribution of this document is permitted as long as the contents 
are not changed and this copyright notice is included. 

http://eyeonsecurity.net/


 

[INTRODUCTION TO THE FLASH! ATTACK] ....................................................3 

[CURRENT WEB APPLICATIONS AND CROSS-SITE SCRIPTING] .................3 

[PREVENTING CROSS-SITE SCRIPTING ATTACKS].......................................3 

[THE FLASH! ATTACK] ......................................................................................4 

[VULNERABLE SITE AND SOFTWARE EXAMPLES] .......................................5 

[FIXING THE ISSUE]............................................................................................8 

[DEMO! ON EYEONSECURITY.NET] ...............................................................11 

[REFERENCES] .................................................................................................12 

[THANKS] ..........................................................................................................13 



[Introduction to the Flash! attack] 
 
In this document we will be describing a loophole, with security implications, found in 
many websites that allow Flash documents to be inserted within HTML, or uploaded to 
the server. This paper relies on the fact that a huge number of web surfers have installed 
Macromedia Flash plugin/ActiveX control, for an attacker to launch a Cross-site scripting 
attack. We will not go into a lot of detail in describing Cross-site scripting attacks in 
general; However we hope that this paper will explain how Flash documents can be 
used to inject JavaScript into otherwise well filtered Web Applications. 
 
 
[Current web applications and cross-site scripting] 
 
Web Applications consist of non-static web sites, which allow users to interact with the 
site itself1. Examples of such sites include Hotmail, Yahoo, MSN communities and a long 
list of other sites. Most of the times, this interaction involves users being authenticated, 
to provide a multi-user environment. 
 
In an online community such as deviantART2, each member has his own section and 
web space, where he or she can upload artistic material, such as poetry, graphics 
(usually jpg format), photography, and of course, Flash movies. Logged on users (as 
well as anonymous ones) can also view other people’s work. This means that files and 
content are shared between different users. From a security point of view, this means 
that the shared content has to be trusted by both the owner of the content, and the 
person viewing the file. 
 
Cross-site scripting, from now on referred to as XSS3, is a typical attack that exploits the 
trust between the owner of the content and the viewer. In simple terms, XSS consists of 
a viewer who comes across content (set up by another possibly malicious user), which 
contains code, such as JavaScript, that manipulates the page to steal his session 
authentication, or personal details. 
 
 
[Preventing Cross-site scripting attacks] 
– current methods 
 
Most security aware Web Applications usually take either of the three approaches to 
disallow XSS attacks: 

• Disallow all html code by escaping the user input. 
• Allow only specific tags. This is usually achieved by making use of special code 

to represent specific HTML tags. 
• Filter out or remove Active Scripting from HTML code. 

 
These methods are usually believed to disallow malicious users from injecting custom 
HTML or Active Scripting. Web applications such as Hotmail and Yahoo Mail try to 
eradicate all possibilities of injection of JavaScript code (and Active content) by making 

                                            
1 What is a web application? http://davenet.userland.com/2000/03/12/whatIsAWebApplication  
2 deviantART, the largest online artistic community: http://deviantart.com/  
3 XSS: Cross Site Scripting. More information: http://www.cgisecurity.com/articles/xss-faq.shtml  

http://davenet.userland.com/2000/03/12/whatIsAWebApplication
http://deviantart.com/
http://www.cgisecurity.com/articles/xss-faq.shtml


use of extensive content filters. Various ”Internet Authorities” and respected parties such 
as CERT4 and Microsoft5 have described filtering methods and the dangers of this attack 
in detail. 
 
Some Web-Applications that allow Flash content to be uploaded specifically allow flash 
such as deviantART, others just allow files to be stored on the server for later retrieval, 
similar to FTP sites. 
 
This document will describe how such content filtering can be easily bypassed because 
of lack of foresight in the Web Application design. The loophole described here consists 
of trusting Flash documents (or movies as referred by Macromedia), and therefore not 
treating this material as Active Content.  
 
 
[The Flash! attack] 
 
Macromedia Flash has its own built in scripting language. ActionScript6 (the scripting 
language) seems very simple to seasoned JavaScript coders as it uses a very similar 
syntax to JavaScript, C and PERL. However this same language can be used for 
complex animations, simulations, creation of games etc.. What’s interesting for us is the 
getURL() action7. This function allows us to redirect the end user to another page. The 
parameter would usually be a URL; something like “http://eyeonsecurity.net”, so that the 
script looks like this: 
 

getURL(“http://eyeonsecurity.net”) 

 
Suppose we specify a JavaScript: URL instead:  
 

getURL(“javascript:alert(document.cookie)”) 
 
The above example pops up a JavaScript alert box with the cookie belonging to the 
domain hosting the page that displays the flash document. This means that we have 
successfully injected JavaScript by making use of “features” within Internet Explorer and 
Flash. In the example Flash file we insert script similar to the above in the first frame as 
shown in the screenshot.  
 

                                            
4 CERT on XSS: http://www.cert.org/tech_tips/malicious_code_mitigation.html/  
5 Microsoft on XSS: http://www.microsoft.com/technet/security/topics/crssite.asp  
6 More information for this http://www.macromedia.com/desdev/mx/flash/  
7 documentation http://www.macromedia.com/support/flash/action_scripts/actions/geturl.html  

http://www.cert.org/tech_tips/malicious_code_mitigation.html/
http://www.microsoft.com/technet/security/topics/crssite.asp
http://www.macromedia.com/desdev/mx/flash/
http://www.macromedia.com/support/flash/action_scripts/actions/geturl.html


 
 
 
[Vulnerable site and software examples] 
 
Ezboard (http://www.ezboard.com/) is probably one of the best well-known free online 
Bulletin Board Systems around. This BBS which is HTTP-based, allows its users to have 
their signatures in flash by making use of the EMBED tag. Therefore in our tests we edit 
our preferences and specify the following code in the signature:  
 
<embed  

src="http://eyeonsecurity.net/download/example.swf"  
pluginspage=”http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_Version=Shockwave

Flash” 
type="application/x-shockwave-flash"  
width="0"  
height="0" 

> 
        </embed> 
 
The below screenshot illustrates the idea better.  
 

 
 
 
This code will be added to each post the attacker submits on the Ezboard forum, 
allowing him to steal the user’s session cookie.  
 
 
DeviantART which is a very popular website, encourages it’s users to submit flash 
animations and creations to be viewed by other site members. Of course a malicious 
user with intent to steal user accounts and possibly administrative accounts, would 
create a new account, upload a malicious Flash file and wait for the results. No 
demonstration is available for this site.  
 

http://www.ezboard.com/


MSN Communities8 – this site allows users to upload their own files … amongst the files 
we uploaded were SWF files, which in turn execute JavaScript code. This is a very 
obvious security flaw. In a previous paper9 on EyeonSecurity, named “Microsoft 
Passport Account Hijack Attack”, we outline how a single flaw in an MSN or Passport 
network site creates a significant security problem.  
 
Anonymous services such as Anonymizer10 and The-Cloak11, are also vulnerable to this 
attack. These services try to filter out JavaScript from HTML pages, however fail to 
recognize the attack described here at the time of writing. Meaning that web master 
linking (or redirecting) its users to an SWF file can bypass the restrictions set up by 
these services. 
 
Two specific Forum (BBS) software, which are particularly vulnerable to this attack, are 
Ikonboard and YaBB12. These particular forums allow only specific custom tags which 
are then parsed by the Web Application to produce the end result. However these 
forums allow flash animations to be embedded within the page by using the [flash] 
special tag, which is converted to the correct Object tag.  
 
Example 
 
[flash]http://eyeonsecurity.net/download/example.swf[/flash] 

 
The above would be interpreted by the script and transformed to: 
 
<object  

classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"  
width=200  
height=200> 

<param  
name=movie  
value=http://eyeonsecurity.net/download/example.swf> 

<param  
name=play  
value=true> 

<param  
name=loop  
value=true> 

<param name=quality  
value=high> 

<embed  
src=http://eyeonsecurity.net/download/example.swf 
width=200  
height=200  
play=true  
loop=true  
quality=high> 

</embed> 
</object> 

 
 
Of course these specific examples are not the only vulnerable systems around. Any 
online service, which allows Flash content to be inserted is vulnerable to XSS attacks. 
The vendors and services described in this section have been notified of the flaw before 
this document has been made public. This means that the specific examples outlined in 
this section might have been fixed when you are reading this. 
 
                                            
8 MSN Communities: http://communities.msn.com/  
9 EyeonSecurity Papers: http://eyeonsecurity.net/papers/  
10 Anonymizer is a commercial service: http://anonymizer.com  
11 The-cloak is a free service for hiding your ip and more: http://www.the-cloak.com/  
12 Ikonboard: http://www.ikonboard.com/ ; YaBB: http://www.yabbforums.com/  

http://communities.msn.com/
http://eyeonsecurity.net/papers/
http://anonymizer.com/
http://www.the-cloak.com/
http://www.ikonboard.com/
http://www.yabbforums.com/


 



[Fixing the issue] 
 
Simple solution: DO NOT ALLOW FLASH FILES IN YOUR WEB APP. 
 
However in most cases, the solution is not that simple. Consider the case for 
deviantART for example. Flash animations are part of the content of the site. Such 
content is considered critical for the Flash community within deviantART.  
 
Possible solutions for: 

Macromedia (Flash player developer) 
 
Macromedia and EyeonSecurity have worked together to provide a solution for 
Web developers. It was suggested to allow Web designers to change the 
behavior of embedded Flash content within HTML pages. This solution 
addresses issues within forums and similar sites, but is designed not to break 
any exist animations/flash movies. 
 
However such a solution does not address websites such as MSN Communities 
and deviantART. These sites allow users to upload SWF files rather than just link 
to them. Macromedia (as well as EoS) actively discourages web application 
design that allows users to upload unchecked Flash content.  
 
It must be noted that interaction between the HTML page (and JavaScript or 
other Active Content for that matter) and a Flash file is supported using different 
functions13, and the method described in this document is a “hack” rather than a 
supported function. However a well-known application that produces Flash 
Movies, called Swish14 makes use of the JavaScript method to allow Web 
Designers insert their own JavaScript code.  
 
Macromedia have released a bulletin about this issue on June 13, 2002.This 
document can be found at: 
http://www.macromedia.com/v1/handlers/index.cfm?ID=23051  

 
 

Web Developers and Web Designers 
 

A good solution would be to actually parse the flash animation and filter malicious 
parameters in getURL(). This addresses the case when a Web application allows 
SWF files to be uploaded to the server. Webmasters are highly encouraged to 
parse and filter Flash content if they allow users to upload. Webmasters may 
choose to block any Flash content which contains getURL() actions that do not 
specifically point towards an HTTP site. Another solution would be to change all 
getURL() actions to point to a new window. This can be achieved by specifying 
the target window as “_blank”. By making the described changes, JavaScript 
URLs will not execute under the hosting domain’s privileges. However, as 

                                            
13 An example of communication between JavaScript and Flash: 
http://www.macromedia.com/support/flash/ts/documents/java_script_comm.htm  
14 Swish is an alternative to Macromedia’s Flash MX http://www.swishzone.com/  

http://www.macromedia.com/v1/handlers/index.cfm?ID=23051
http://www.macromedia.com/support/flash/ts/documents/java_script_comm.htm
http://www.swishzone.com/


pointed out by Bertrand Saint-Guillain15, this solution is not consistent due 
to the fact that ActionScript is a complex scripting language and provides 
the eval() function. This function allows more sophisticated hackers to 
even bypass protection against parsing of ActionScript.  
 
Example: 

a="get"; 
b="URL"; 
c="javascript:"; 
d="alert('bypassed');void(0);"; 
eval(a+b)(c+d); 

 

The above example will bypass any protection provided by the proposed 
solution, since there is no getURL(‘javascipt:whatever’) involved. 
 
Yet another possibly more feasible solution would be to make use of a separate 
domain for storing and displaying the Flash movies. This method may also be 
used for other documents, such as HTML files, to allow Active Content without 
enabling attackers to obtain the session authentication by stealing the cookie. 
This means that if your domain is “securewebapplication.com”, you could store 
possibly malicious content on “securewebapplication.net”. Of course this means 
that the content of “securewebapplication.net” does not require session 
authentication and therefore this content is shared with anonymous users. It is 
important to note that the malicious content should only be displayed from a 
“sanitized” domain, meaning that if the flash document is contained in an HTML 
file, the HTML file has to be also displayed from the “sanitized” domain. 
 
Web developers can also make use of an IFRAME which points directly to the 
Flash animation residing on a third party domain instead of EMBED or OBJECT 
tag. In this case the Flash animation is still included but is launched from a child 
frame eliminating the possibility for JavaScript to be used for stealing cookies 
and other Cross site scripting attacks. This method was first described on 
Neworder16 message board, and later added to the Bulletin17 issued by 
Macromedia. While this solution is more consistent it offers less compatibility 
across different browsers which do not support IFRAME18.  
 
 
Suggestions for users of specific products/services 
 
Ezboard. 
The response given by the product support of Ezboard was the following: 
 
Unfortunately, it is very, very tough to make it impossible to make 
cookie stealing impossible.  If we did, ezboard would not have nearly as 
many customization options as it currently does.  Fortunately, we have a 
high security login setting which checks the user's IP address.  If it is 
selected, nobody else will be able to use the cookie to login while the 
real user is logged in. 
 

                                            
15 Bertrand Saint-Guillain [supersatori@supersatori.com] is the web designer/master of 
http://www.supersatori.com/  
16 http://neworder.box.sk/board.php?disp=88037&did=edge0  
17 http://www.macromedia.com/v1/handlers/index.cfm?ID=23051  
18 Thanks to Bertrand Saint-Guillain for pointing this out 

http://www.supersatori.com/
http://neworder.box.sk/board.php?disp=88037&did=edge0
http://www.macromedia.com/v1/handlers/index.cfm?ID=23051


This may a good solution, which addresses XSS issues, including the one 
described in this paper. However IP checking does not work well with Internet 
users behind proxies.  
 
 
YaBB 
The solution response by Corey Chapman was: 
 
We didn't build it as an option, but we've informed people to simply  
comment out or delete the (I think 2) flash-rendering lines in  
yabbc.pl.  I'll probably build a disable feature in for the next  
update, assuming there'll be one for this version. 

 
This is quite straightforward solution. Of course we suggest also removing the 
Flash icon display when editing the message.  
 
 
Ikonboard 
This product allows administrators to disable flash support, according to Andrew 
(Ikonboard). 
 
This does open the 
security hole that you mentioned, as people have used it before to 
change people's avatars. The problem is that we can't just remove the 
option as many users would be very unhappy with us. As it is right now 
you can disable this option, and not allow flash on your board. 
 
This sounds like a neat solution – however we did not test this feature.  
 



[Demo! on EyeonSecurity.net] 
 
For a demonstration of the issue described here check out: 
 
http://eyeonsecurity.net/advisories/flash-demo/  
 
 

http://eyeonsecurity.net/
http://eyeonsecurity.net/advisories/flash-demo/


[References] 
 
Cross-site scripting 
 
XSS Faq by CgiSecurity.com 
http://www.cgisecurity.com/articles/xss-faq.shtml 
 
Information on Cross-Site Scripting Security Vulnerability by Microsoft 
http://www.microsoft.com/technet/security/topics/crssite.asp 
 
CERT 
Understanding Malicious Content Mitigation for Web Developers 
http://www.cert.org/tech_tips/malicious_code_mitigation.html  
 
Malicious HTML Tags Embedded in Client Web Requests 
http://www.cert.org/advisories/CA-2000-02.html  
 
Evolution of Cross-Site Scripting Attacks by iDefense 
http://www.idefense.com/XSS.html  
 
 
Web Application Security – General information  
 
Open Web Application Security Project 
http://www.owasp.org/  
 
Web Application Security - PowerPoint Presentation 
http://www.whitehatsec.com/dc9.html  
 
 
Flash Documentation 
 
Designer & Developer Center 
http://www.macromedia.com/desdev/mx/flash  
 
Flash Kit – A Flash Developer Resource 
http://www.flashkit.com/  
 
OpenSWF.org – information about the Flash format 
http://www.openswf.org  

http://www.cgisecurity.com/articles/xss-faq.shtml
http://www.microsoft.com/technet/security/topics/crssite.asp
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.idefense.com/XSS.html
http://www.owasp.org/
http://www.whitehatsec.com/dc9.html
http://www.macromedia.com/desdev/mx/flash
http://www.flashkit.com/
http://www.openswf.org/


[Thanks] 
 
Bertrand Saint-Guillain for his ideas and e-mails about the problems in the 
suggested solutions. Bertrand Saint-Guillain is webmaster and designer of 
http://www.supersatori.com/ 

http://www.supersatori.com/

	[INTRODUCTION TO THE FLASH! ATTACK]3[CURRENT WEB APPLICATIONS AND CROSS-SITE SCRIPTING]3[PREVENTING CROSS-SITE SCRIPTING ATTACKS]3[THE FLASH! ATTACK]4[VULNERABLE SITE AND SOFTWARE EXAMPLES]5[FIXING THE ISSUE]8[DEMO! ON EYEONSECURITY.NET]11[REFERENCES]12[
	[Current web applications and cross-site scripting]
	[Preventing Cross-site scripting attacks]
	[The Flash! attack]
	[Vulnerable site and software examples]
	[Fixing the issue]
	[Demo! on EyeonSecurity.net]
	[References]
	[Thanks]

